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ABSTRACT

Counts in cells are used to analyse the higher order properties of the statistics of the

EDSGC survey. The probability distribution is obtained from an equal area projection

point source catalog with massive oversampling in the scale range of 0:015� � 2�.

The factorial moments of the resulting distribution and the sN 's characterizing the

non-Gaussian nature of the distribution are extracted. These results are directly

comparable to previous results from the APM survey, and to theoretical results from

perturbation theory. The deprojected 3D values corresponding to the sN 's are also

determined. We �nd that the 3D values match the scaling relation for strongly

nonlinear clustering found in N-body simulations remarkably well.
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1. Introduction

A leading hypothesis for the origin of the large-scale structure of the distribution of galaxies

is that it is a consequence of gravitational instability in an initially homogeneous medium. The

N�point correlation functions provide a set of statistics suited for quantifying the expected

departure from homogeneity of the galaxy distribution under this hypothesis (Peebles 1980). The

statistical analyses of recent galaxy catalogs has tended to provide support for this scenario.

While the 2{point correlation function has clearly demonstrated the non-Poisson character of the

galaxy distribution, it is not a unique test of gravitational instability since it is reproduced by a

variety of models for structure formation (Peebles 1993). If gravitational instability dominates the

growth of structure, however, then it is possible to predict a relation between the higher-order

correlation functions and the 2{point function. In particular, if the structure is hierarchical in

nature, as expected in the strongly nonlinear limit, then the N{point functions are symmetrized

products of N � 1 2{point functions (Peebles 1980), with well-de�ned theoretical predictions for

their amplitudes (Hamilton 1988). In the limit of weakly nonlinear clustering, analytic forms for

the amplitudes in analogous relations between spatial averages of the correlation functions have

been derived (Juszkiewicz, Bouchet, & Colombi 1993; Colombi et al. 1994; Bernardeau 1994a,b).

Angular catalogs o�er two advantages over their redshift analogs for measuring higher-order

correlations: their large size and their insensitivity to redshift distortions. A disadvantage is

that, because they are projections of the galaxy distribution, simplifying assumptions must be

made concerning the clustering of galaxies to make the extraction of the higher order correlations

practical. Thus the analyses of both types of catalogs are complementary. Measurements of

the higher order correlation functions in angular catalogs have supported the form predicted by

the hierarchical model. The amplitudes, however, have shown some variance, depending on the

method of analysis and the catalog. Szapudi, Szalay, & Bosch�an (1992) con�rmed and re�ned the

estimate of Groth & Peebles (1977) for the 3{point function of the Lick counts (Shane & Wirtanen

1967), although their estimate of the amplitude of the 4{point function falls somewhat below

that of Fry & Peebles (1978). Szapudi et al. provide estimates for higher order functions as well.

Analyses of the IRAS catalogs have provided even stronger support for the hierarchical model,

although the correlations of these infrared-selected galaxies tend to be somewhat weaker than

those of their optical counterparts, perhaps re
ecting a genuine morphology-dependence in the

nature of clustering (Meiksin, Szapudi, & Szalay 1992, Bouchet et al. 1993). Recently, the analysis

of higher order functions has been extended to the APM catalog (Maddox et al. 1990a,b,c) by

Gazta~naga (1994) and Szapudi et al. (1995), (hereafter SDES), with generally good agreement

with the Lick results of Szapudi, Szalay, & Bosch�an (1992), although there are some discrepancies.

These may be due to di�erences in the scales over which these functions are averaged, but the

di�erences between the catalogs or the measurement techniques cannot be precluded as the origin.

Systematic variations in the measured magnitudes will induce arti�cial correlations, while di�erent

techniques will exhibit di�ering degrees of sensitivity to the sources of measurement error (Szapudi

& Colombi 1996, hereafter SC96).
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In this paper, we present an analysis of the higher order functions in the EDSGC catalog,

an angular catalog covering 1000 square degrees (Heydon et al. 1989; Collins, Nichol & Lumsden

1992). We employ an e�cient method based on factorial moments of cell counts. The exhaustive

sampling of the catalog eliminates the measurement errors arising from the use of a �nite number

of sampling cells (SC96). This is veri�ed on small angular scales using an algorithm equivalent to

throwing at random an in�nite number of cells to cover the catalog.

In the next section, we describe the EDSGC catalog, followed by an account of the

measurement technique in x3. We present the results of the analysis in x4, and discuss their

relation to previous analyses of other catalogs and to theoretical expectations in x5.

2. The Edinburgh/Durham Southern Galaxy Catalogue

The Edinburgh/Durham Southern Galaxy Catalogue (EDSGC) is a catalogue of 1.5 million

galaxies cover ' 1000 square degrees centered on the South Galactic Pole (SGP). The database

was constructed from COSMOS scans (a microdensitometer) of 60 adjacent UK IIIa{J Schmidt

photographic plates and reaches a limiting magnitude of bj = 20:5. The entire catalogue has

< 10% stellar contamination and is <
� 95% complete for galaxies brighter than bj = 19:5 (Heydon

et al. 1989). The two{point galaxy angular correlation function measured from the EDSGC has

been presented by Collins, Nichol, & Lumsden (1992) and Nichol & Collins (1994).

A rectangular area of the catalog between � = 22h, passing through 0h to 3h, and declination

�42 � � � �23, was suitable for our purposes. The original coordinates were converted to physical

ones using an equal area projection. This did not a�ect the declination range, but to obtain a

rectangular area the physical coordinates corresponding to right ascension, � � �min cos(�), were

restricted to values less than 55�. This resulted in a sample of 2:9 � 105 galaxies, and a total

e�ective survey area of 1045 square degrees, or ' 997 square degrees after accounting for the

cut-out regions.

Magnitude cuts were determined by practical considerations. The catalog is complete to about

20:3 magnitude. We adopt a limit half a magnitude brighter for our analysis to be conservative.

To permit a direct comparison with results from the APM survey (Gazta~naga 1994), we used the

magnitude cut 16:98 � mEDS � 19:8. There is an o�set in the magnitude scales of the two catalogs

(Nichol 1992). Based on matching the surface densities listed in SDES, the magnitude range we

have adopted corresponds approximately to the APM magnitude range 17 � mAPM � 20.

3. The method of analysis

The calculation of the higher order correlation functions consists of a sequence of three

consecutive steps: estimation of the probability distribution, calculation of the factorial moments,
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and extraction of the normalized, averaged amplitudes of the N -point correlation functions. We

present the relevant de�nitions and theory below.

Let PN denote the probability that a cell contains N galaxies, with implicit dependence on

the cell size `. The best estimator for PN from the catalog is the probability that a randomly

thrown cell in the catalog contains N galaxies (excluding edge e�ects, which are negligible for the

scales in the present study, except perhaps on the largest scales as a result of the holes cut out

around bright stars). This may either be calculated from the con�guration of the points using a

computer algorithm (see Szapudi 1996), or estimated by actually throwing cells at random,

~PN =
CX
i=1

�(Ni = N); (1)

where C is the number of cells thrown and Ni is the number of galaxies in cell i. It is desirable to

use as many cells as possible, since for large C, the errors behave as (SC96)

EC;V = (1�
1

C
)E1;V + EC;1; (2)

where the EC;V is the total theoretical error (not including the sytematic errors of the catalog),

E1;V is the `cosmic' error associated with the �niteness of the catalog, and EC;1 is the error

associated with the �nite number of cells used for the estimator. Since EC;1 / C�1 (SC96), the

lowest possible error is obtained for C �! 1. We employed such a code on scales smaller than

0:5�. On larger scales, up to 2�, we used massive oversampling (i.e. C � V=v, where V and v are

the areas of the catalog and the cell respectively corresponding to a simple grid over the catalog),

because of the limitations of the available computer resources for the current implementation of

this memory intensive algorithm.

The factorial moments (see e.g. Szapudi & Szalay 1993), may be obtained from the probability

distribution using

Fk =
X

PN(N)k; (3)

where (N)k = N(N � 1)::(N � 1 + k) is the k-th falling factorial of N . The Fk's directly estimate

the moments of the underlying continuum random �eld which is Poisson sampled by the galaxies.

This is equivalent to the ordinary moments after shot noise subtraction as can be seen from the

relation with ordinary moments

hNmi =
mX
k=0

S(m; k)Fk; (4)

where S(m; k) are the Stirling numbers of the second kind. The use of factorial moments simpli�es

all the expressions, since sums weighted by the Stirling numbers (shot noise) are eliminated.

For instance, the factorial moments of a Poisson distribution are Fk = hNik. These could have

been obtained from a constant probability density �(� � hNi), which is the underlying continuum

process. The ordinary moments of the Poisson distribution, however, will be more complicated,

containing `Poisson noise' from the previous equation.
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The average of the N -point angular correlation functions on a scale ` is de�ned by

�!N (`) = A(`)�N
Z
d2r1 : : : d

2rN!N (r1; : : : ; rN); (5)

where !N is the N -point correlation function in the two dimensional survey, and A(`) is the area

of a square cell of size `. We de�ne sN in the usual way,

sN =
�!N

�!N�12

: (6)

This de�nition is motivated by the assumed scale invariance of the N -point correlation functions

in the strongly nonlinear limit (Balian & Schae�er 1989),

!N (�r1; : : : ; �rN) = ��(
�1)(N�1)!N (r1; : : : ; rN); (7)

where 
 is the slope of the three-dimensional two-point function. The coe�cients also quantify

the deviation from gaussian statistics, like skewness (N = 3) and kurtosis (N = 4). Derivations

of the coe�cients from perturbation theory have recently been performed in the weakly nonlinear

limit for three dimensions by Juszkiewicz et al. (1993) and Bernardeau (1994a, b), and for two

dimensions by Bernardeau (1995).

The factorial moments have an especially simple relation to the sN 's through the recursion

relation (Szapudi & Szalay 1993),

sk =
Fk �!

Nk
c

�
1

k

k�1X
q=1

(k � q)sk�qFq
�k
q

�
N q
c

; (8)

where Nc = hNi�!. Note that although the notation indicates a projected catalog, there are

corresponding expressions for three dimensions.

The deprojection of the sN 's to their 3D counterparts has an intrinsic limitation due to the

�nite sizes of the cells. While the deprojection of any individual tree-structure is well-de�ned, care

must be taken in interpreting the deprojected values of the cell-count determined sN 's, since these

implicitly contain an averaging over trees within each cell (see SDES for a discussion). On small

scales, where clustering is strongly nonlinear, the coe�cients deproject to the 3D coe�cients SN
de�ned by SN = ��N=��

N�1
2 , where the hierarchical assumption may be presumed valid. In this case,

sN = RNSN ; (9)

where SN is the corresponding three dimensional value for the spherically averaged ��N 's. The

projection coe�cients RN 's are fairly insensitive to slight variations of the magnitude cut (see

Table 2 in SDES), and the shape dependence is neglected according to the �ndings of Bosch�an,

Szapudi, & Szalay (1994). We adopt the values of SDES. In the intermediate range of weakly

nonlinear clustering, hierarchy-breaking terms become signi�cant, and the di�erences between the

conical averaging of the projected correlation functions and the spherical averaging of the three
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dimensional functions become large (Bernardeau 1995). In this limit, the sN deproject according

to

sN = RN�N ; (10)

where the �N 's involve averages only over the orthogonal parts of the wavevectors. (The

expressions for RN are identical in equations [9] and [10] for power-law power spectra.)

Expressions for �N for pure power-law power spectra have been worked out by Bernardeau (1995).

For the depth of the EDSGC, the weakly nonlinear region corresponds to separations of � >
� 1�.

4. Results

We measured counts in cells by throwing a large number of cells in the scale range of

0:015125�� 2� (corresponding to 0:1� 13h�1Mpc with D ' 370h�1Mpc, the approximate depth of

the catalog). The largest scale is limited by the geometry induced by the cutout holes: the number

of available cells would be severely limited for a measurement on signi�cantly larger scales. The

smallest scale approaches that of galaxy halos for the typical depth of the catalog. Note that even

at the smallest scale, where the average count is only 0:0645 per cell, the sN 's are measurable

to high accuracy because of the high oversampling and the e�cient Poisson subtraction through

the use of factorial moments. By comparison, the practice common in the literature is to stop at

scales four times that at which the Poisson noise starts to dominate, i.e., where the average count

approaches unity.

The results of both high and low oversampling measurements for PN are displayed in Figure 1.

The low sampling corresponds to covering the area with cells once only, i.e. the number of sampling

cells is CV = V=v, where V is the volume of the survey and v is the volume of the sampling cell at

the given scale. As proved in (SC96), the `number of statistically independent cells' , C�, depends

strongly both on scales and on the aims of the measurement, but for higher order statistics it is

generally much larger than CV . Therefore in the high oversampling measurements we doubled the

sampling until the values of the sN 's, the primary goals of our measurement, stabilized. We also

checked our results with `in�nite sampling' up to scales of 0:5�, where such a code could still work

within our present computational limits. A comparison of the two curves shows the substantial

improvement in accuracy achieved through oversampling.

Figure 2 shows the scale dependence of the sN 's determined from the counts in cells. The

solid line corresponds to the measurements of the entire survey area with high oversampling. The

dotted line is the same measurement with undersampling. For the error determination we divided

the survey into four equal parts, similar to the approach of Gazta~naga (1994); it is likely that

this procedure overestimates the cosmic error (SC96). The squares show the median of these

measurements. The error bars are given by a robust determination of the dispersion: the spread

between the minimum and maximum quartiles (see Hoaglin et al. 1983 for details). The error bars

are shown only for those points for which there was su�cient physically valid data permitting a
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determination of the quartiles. We note that on large scales the squares deviate from the solid

line: this is presumably a result of edge e�ects. For s3 and s4, the errors range over 8 � 36%

and 19� 56%, respectively. (We approximate 1� errors by dividing the fourth spread errors by

1.349.) These may be compared with theoretical estimates for the errors. We base the estimates

on the errors of the correlator moments over the entire catalog, according to SC96. For the �rst

four moments, respectively, the errors are, ranging from large scales to small, 3 � 2%, 7 � 12%,

13� 45%, and 23� 63%. Although there is no simple formula relating the errors of the moments

to the errors of the sN 's, it is likely that the errors at each order are dominated by the largest

error; i.e., the highest moment. Thus, unless some cancelation e�ects are present, the last two

values should well represent the errors on s3 and s4. These compare well with the empirical errors

from the fourth spread above.

Figure 2 exhibits two plateaus, one at small scales (< 0:03�) and a second at large (> 0:5�).

The large scale plateau is approaching the width of the survey, and so may merely re
ect edge

e�ects. The plateau at small separations, however, may indicate that the strongly nonlinear

clustering limit has been reached, in which case the hierarchical form for the angular correlations

should apply, for which the coe�cients appear to converge. The values of sN are provided in Table

1, and the ratios sN=RN in Table 2.

In order to probe more deeply into the weakly nonlinear regime, we performed a separate

analysis extending to 4�. On these scales the majority of cells overlaps with some of the cut-out

regions, therefore the analysis had to be done without the elimination of such cells, otherwise

edge e�ects and cosmic errors from the resulting small area would have severly a�ected the

measurement. After reanalysing all scales without eliminating cells containing the cut out holes,

we concluded the e�ect is a slight low bias, if any, which is well within the statistical errors. We

nonetheless �nd good agreement with the smaller scale analysis for � � 1�. We obtain in the larger

scale analysis s3 = 5:55 and s4 = 58:0 at � = 2�, and s3 = 6:88 and s4 = 48:2 at � = 4�. These

correspond to �3 = 4:71 and �4 = 39:1 at 13h�1 Mpc separation, and �3 = 5:84 and �4 = 32:5 at

26h�1 Mpc separation.

5. Discussion

We �nd generally good agreement between the amplitudes sN in the EDSGC and those

derived by Gazta~naga for the APM survey. While the values we derive tend to lie systematically

above those for the APM (Figure 3), each agrees within the error estimate. Unlike Gazta~naga's

results, however, we �nd that the sN 's generally reach a plateau at small scales when we sample

the catalog exhaustively (Figure 2). By contrast, Gazta~naga �nds that the coe�cients tend to turn

over at small separations. Without exhaustive sampling, we obtain a similar result, demonstrating

the need to sample the catalog many times to obtain an accurate determination of the clustering

strength on small scales. The reason for the di�erence from Gazta~naga's results is unclear, but the

di�erence may account for the higher values for the coe�cients we obtain from the EDSGC.
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A plateau at small separations may be expected when the clustering becomes strongly

nonlinear. The e�ect is found, for example, in the N-body experiments for scale-free clustering by

Colombi, Bouchet, & Hernquist (1995). If the clustering we measure is strongly nonlinear on the

smallest scales, then we are permitted to identify SN = sN=RN in Table 2 at small separations.

We may then in turn derive the 3D clustering amplitudes QN . These are de�ned within the

hierarchical model

�N(r1; : : : ; rN) =

K(N)X
k=1

QNk

BNkX N�1Y
�(rij); (11)

where �(r) � �2(r) = (r=r0)

 , as the average of the QNk

QN =

K(N)X
k=1

QNkBNkFNk

N (N�2)
; (12)

where FNk are the form factors associated with the shape of cell of size unity (see Bosch�an,

Szapudi, & Szalay 1994 for details)

FNk =

Z
1
d3q1 : : : d

3qN

N�1Y �
j qi � qj j



Z
1
d3p1d

3p2jp1 � p2j
�

�
�1

: (13)

The product above runs over the N � 1 edges of a tree. The summation in equation (11) is

over all possible NN�2 trees with N vertices. In the sum, every �(rij) corresponds to an edge

rij =j ri � rj j in a tree spanned by r1; : : : ; rN . For each tree, there is a product of N � 1 two-point

functions and a summation over all the BNk labelings of all the K(N) distinct trees.

Using the values for r = 0:1 Mpc in Table 2, we �nd for N = 3 � 9,

QN = (2:0; 7:2; 28; 98; 270; 570; 850). The values for Q3 and Q4 somewhat exceed those

found for the Lick-Zwicky sample (Groth & Peebles 1977; Fry & Peebles 1978; Szapudi, Szalay &

Bosch�an 1992), and greatly exceed the values found for the CfA1 and SSRS surveys (Gazta~naga

1992). The discrepancy between the larger angular samples and the smaller samples used for

the redshift surveys has been previously noted by Fry & Gazta~naga (1994). Our results suggest

the discrepancy at small scales may be even larger. The reason for the di�erence in the values

is unknown, but may be a result of cosmic variance. It appears not to be a result of the added

redshift information, since Gazta~naga (1994) found that suppressing the redshifts in the CfA1 and

SSRS surveys and treating the samples as angular catalogs had little e�ect on the values.

In the limit of weakly nonlinear clustering, it is possible to compare the clustering coe�cients

with theoretical predictions for a given power spectrum (Juszkiewicz, Bouchet, & Colombi 1993;

Bernardeau 1994a,b; Bernardeau 1995). We �nd from the values of �3 and �4 at separations of 6.5,

13, and 26 h�1 Mpc the values ne� = (�1:2;�1:7;�2:5) for N = 3, and ne� = (�1:3;�1:6;�1:3)

for N = 4, using the results of the larger 4� analysis for � > 1� from the previous section, and the

expressions relating �N to n in Bernardeau (1995). The trend of decreasing ne� with increasing

scale is suspect. For a power spectrum like CDM, ne� increases with increasing scale. The inverse
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trend may indicate that edge e�ects are signi�cant on these scales and are compromising the

determination of sN on scales exceeding 1�.

While the weakly nonlinear limit should break down on scales smaller than 1�, it is informative

to explore the inferred dependence of ne� on scale to smaller values. Colombi et al. (1995) �nd

from N-body experiments for scale-free clustering that the values for SN vary only slightly with

scale, increasing for small separations where the clustering becomes strongly nonlinear. They �nd,

independent of n,

SN '
�
D(��2)

�N�2 ~SN ; (14)

for N = 3; 4, and 5, where D(��2) = (��2=100)
0:045 and ~SN is the value of SN for ��2 = 100. The

dependence on scale implies a weak departure from the hierarchical clustering behavior, since

the SN depend on scale. The dependence is so weak, however, that the departure is slight. We

compare the clustering amplitudes found in the EDSGC with this relation in Figure 4a. The

agreement in the strong clustering limit is remarkably good, particularly for N = 3 and 4. Because

we have only angular information, it is not possible to determine whether the deviation from

the scaling relation for log ��2 < 2 is a real e�ect or a consequence of the inherent limitations of

extracting 3D information from a projected catalog. It should be noted that the agreement is

particularly remarkable since hierarchical clustering is assumed for the underlying distribution in

order to convert from the projected correlations to the 3D, while the relation of equation (14)

violates this assumption. This suggests that the hierarchical model is a good, though perhaps not

perfect, description of the clustering.

Colombi et al. �nd that the clustering for N = 3, 4, and 5 may be described by a

single e�ective spectral index ne� , found from the expressions for weakly nonlinear clustering

(Juszkiewicz, Bouchet, & Colombi 1993; Bernardeau 1994a,b). Although the relations between

the SN and n from weakly nonlinear theory do not apply for strong clustering, and even less so in

an angular catalog, we may adopt them to obtain a formal value for ne� as done by Colombi et al.

(1995, 1996). We do so by �tting sN=RN to the expressions for SN in the limit of weakly nonlinear

clustering for N = 3 : : :6 using a least squares method, for � � 1�. The results are shown in Figure

4b, including the values derived for each N individually. Within the error estimates, a single value

of ne� appears to provide an adequate description of the clustering amplitudes, although the errors

are large for small separations. A comparison with N-body results for scale-dependent clustering

models, like a CDM-dominated cosmology, could be very illuminating.

I.S. thanks S. Colombi, J. Frieman, and A. Szalay for stimulating discussions. S. Colombi

provided the theoretical error estimates in x4. I.S. was supported by DOE and NASA through

grant NAG-5-2788 at Fermilab. A.M. is grateful to the W. Gaertner Fund at the University of

Chicago for support.
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6. Figure Captions

Figure 1. Shows the distributions PN of counts in cells measured in the EDSGC catalog. The

solid line corresponds to exhaustive sampling, while the dotted line to severe undersampling. The

curves from left to right correspond to cell sizes from 0:015125� doubling up to 2�. Exhaustive

sampling is essential on scales exceeding � 0:2�.

Figure 2. The solid line is the measurement of the sN 's over the entire survey area with exhaustive

sampling, the dotted line is the same with undersampling. Undersampling results in a systematic

underestimate of the coe�cients. The squares show the median of the measurements in four equal

parts of the survey, and the errors are calculated from the fourth spread. The misalignment of the

squares and the solid line at the largest scales may be a result of edge e�ects. The triangles show

the �N 's corresponding to the best �tting formal ne� (see text).

Figure 3. A comparison with the results from the APM survey. The points with short error

bars are the values determined for the APM catalog by Gazta~naga 1994, which were averaged

over the range 0:09� to 0:53�. The squares (with the larger error bars), and the triangles are

our measurements with exhaustive sampling and low sampling, respectively, averaged over the

same range of scales. The three points were shifted slightly for display purposes. Note that the

range quoted is adjusted for the equivalent size of a square cell, thus di�ering from the scales in

Gazta~naga (1994) by a factor of �1=2.

Figure 4. a. The clustering amplitudes sN=RN as a function of the average 2-point function ��2.

Also shown is the scaling relation of Colombi et al. (1995) found in the strongly nonlinear limit

in N-body experiments with scale-free initial conditions. b. The best formal �ts for ne� (solid),

using up to sixth order quantities. Also shown are the values determined from each N separately,

including an indication of the errors based on the upper and lower quartile values for each SN .

Within the errors, the clustering may be described by a single value of ne� . Shown are the values

of ne� for N = 3 (dotted), N = 4 (short-dashed), N = 5 (long-dashed), and N = 6 (dot-dashed).
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